

» A free is an ADT that stores elements hierarchically.

®» A free T is aset of nodes storing elements in a
parent-child relationship with the following
properties:

= T has a special node r, called the root of T .

= Each node v of T different from r has a parent
node u.

» Direct applications:

= QOrganizational charts
» Node

= File systems

= Programming environments

Tree Terminologies

» |f node u is the parent of node v, then we say that v is a child of u.
» Two nodes that are children of the same parent are siblings .

» A node is external (leaf) if it has no children, and it is internal if it has one or more
children.

» The ancestors of a vertex are the vertices in the path from the root to this vertex.
The descendants of a vertex v are those vertices that have v as an ancestor.

= Depth : The depth of a node is the number of edges from the node to the tree's
root node. In other words, the depth of v is the number of ancestors of v.

= The height of a tree T is equal to the maximum depth of an external node of T.

=» Height of a node v is the number of edges on the longest path from v to a leaf. A
leaf node will have a height of 0. The height of a tree Is the largest level of the
vertices of a free which is he height of a roof.

» A subitree of atree Tis atree S consisting of a node in T and all of its descendants
inT.

Data Structures Department of Computer Science — University of Zakho

The parent of d is a.
The children of c are g, h,and i .
The siblings of g are h and i.

The ancestors of f are d,a, and r.
Subtree The descendants of a are d,e,and f.
The internal vertices are r,a,d,c, g, and i .
The leaves are e, f,b,j, h k, and L.

The heightof d is 1.

The height of c is 2.

The height of b is O.

The height of r is 3 which is the height of tree.
The depth of d is 2.

The depth of r isO.

The depth of k is 3.

The height of Tree is 3.

Theorem: A free with n nodes has n — 1 edges.

Data Structures Department of Computer Science — University of Zakho

Tree Traversal

» A fraversal of a tree Tis a systematic way of accessing, or "visiting,"
all the nodes of T.

®» There are three main types of tree traversals:

= Preorder: A node is visited before itfs descendants.
= Postorder: a node is visited after its descendants.

= |norder: We will talk about this later. This is only supported in binary tree.

Data Structures Department of Computer Science — University of Zakho

Tree Traversal

®» preorder: a node is visited before its descendants

Algorithm preOrder(v) |preorder(A) visits: ABEFCGHID

O(n) visit(v)
for each child w of v

preOrder (w)

®» postorder: a node is visited after its descendants

O(n) | Algorithm postOrder(v) 1 etorder(A) visits: EFBGHICDA

for each child w of v
postOrder (w)
visit(v)

Data Structures Department of Computer Science — University of Zakho 6

Binary Trees

®» A binary free is an ordered tree with the

following properties:
= Each internal node has only two children

= The children of a node are an ordered pair
(left child, right child)

®» Recursive definition: a binary tree is

= Asingle node is a binary free

= Two binary trees connected by a root is a binary tree
» Applications:

= arithmetic expressions

= decision processes

= searching

B C
/\ /\
D E F G

N

H I

Data Structures Department of Computer Science — University of Zakho

Arithmetic Expression Tree

®» Binary free associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

» Ex: arithmetic expression tree for expression (2 x(a-1) + (3 x b))

Data Structures Department of Computer Science — University of Zakho

Decision Tree

®» Binary free associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

» . . o o o
Ex: dining decision [Won’r q fast medg]

| Yes N

How about coffeee On expense Gccoun’r2
Tree City Pizza Fire Taco Tantos Ray’s

Data Structures Department of Computer Science — University of Zakho

>>: Binary Tree Types

= Two main Types:
» Fyll Binary free

» Complete Binary Tree

Full Binary Tree

A full binary tree is a tree in which every node other
than the leaves has two children.

Data Structures Department of Computer Science — University of Zakho

11

Complete Binary Tree

» A complete binary free is a binary free in which every level, except
possibly the last, is completely filled, and all nodes are as far left as

possible.
() O (4
(\2_/) (\3/< :‘L} ? \y § \2_) ,‘3)
\i\ / ' / \‘ / \\
_P/ i ¥ X 1; : == o ‘ oy \1 \lqA
&) &) B W) 8 () (4) 5) by
Complete Binary Not a Complete
Tree Binary Tree

Data Structures Department of Computer Science — University of Zakho 12

Number of nodes at Levels

« Levell has at most 2!
n O d e S Level Modes

« The number of external
nodesinTis at leasth + 1
and at most 2" . 2

Figure 2.25: Maximum number of nodes in the levels of a binary tree.

Data Structures Department of Computer Science — University of Zakho

14

Binary Tree Traversals

®» Three main types:
1) Preorder fraversal : Preorder (Root, Left, Right)
o the root node is visited first, then the left subtree and finally the right subftree.

?2) Postorder Traversal: Postorder (Left, Right, Roof)

o the root node is visited last, hence the name. First we traverse the left subfree, then
the right subtree and finally the root node.

3) Inorder Traversal: Inorder (Left, Root, Right)

o the left subtree is visited first, then the root and later the right sub-tree.

Data Structures Department of Computer Science — University of Zakho

18

Preorder Traversal of a Binary Tree
» Preorder traversal: Preorder (Roof, Left, Right)

1. the root node is visited first,

2. Traverse the left subtree, i.e., call Preorder(left-subtree)

3. Traverse the right subiree, i.e., call Preorder(right-subtree)

preorder (v) B C

if x! = Null
O(n) print (x.value) /\
preorder(x.leftchild) D E F G

preorder(x.righchild)

Ex: ABDEHICFG

Data Structures Department of Computer Science — University of Zakho

Postorder Traversal of a Binary Tree

» Postorder fraversal: Postorder (Left, Right, Roof)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)

2. Traverse the right subftree, i.e., call Postorder(right-subtree)

3. Visit the roof. A
B C
D E F G
postorder (v)
if x! = Null
O(n) postorder(x.leftchild) H |
postorder(x.righchild)
print (xvalue) Ex: DHIEBFGCA

Data Structures Department of Computer Science — University of Zakho

Inorder Traversal of a Binary Tree

» [norder fraversal: Inorder (Left, Root, Right)

1. Traverse the left subtree, i.e., call Inorder(left-subiree)
2. Visit the root.

3. Traverse the right subtree, i.e., call Inorder(right-subtree) A
B C
Inorder (v) D E F G
if x! = Null
O(n) Inorder(x.leftchild)

print (x.value) H

Inorder(x.righchild)
Ex: DBHEIAFCG

Data Structures Department of Computer Science — University of Zakho

Linked Data Structure for Representing Trees

A node stores:

» clement

00 «—°

®» parent node

®» seguence of children nodes

RO

C E

Data Structures Department of Computer Science — University of Zakho

Linked Data Structure for
Binary Trees

A node stores:

®» clement ?

®» parent node |

» [eft node /8\
= right node [@ @]

\
?
l
C

Data Structures Department of Computer Science — University of Zakho

Array-Based Representation of
Binary Trees

Nodes are stored in an array
®» rank(root) = 1

» |f rank(node) =1, then BIA|D C|E
rank (leftChild) = 2% rank: 123 4 5 6 7
rank(rightChild) = 2% + 1

Ex: ‘A’ is left child of B
rank(A) =2 * rank(B)
=2*1=1

Ex: ‘E’ is right child of D
rank(E) =2 *rank(D) + 1
C E =2*3+1

=7

Data Structures Department of Computer Science — University of Zakho

Exercises

= Write the iterative Implementation (Pseudocode) of preorder and
postorder traversalse

®» The number of edges from the node to the deepest leaf is called
of the free.
a) Height
b) Depth
c) Length
d) Width

Data Structures Department of Computer Science — University of Zakho

25

